CenpH regulates meiotic G2/M transition by modulating the APC/CCdh1-cyclin B1 pathway in oocytes
نویسندگان
چکیده
Meiotic resumption (G2/M transition) and progression through meiosis I (MI) are two key stages for producing fertilization-competent eggs. Here, we report that CenpH, a component of the kinetochore inner plate, is responsible for G2/M transition in meiotic mouse oocytes. Depletion of CenpH by morpholino injection decreased cyclin B1 levels, resulting in attenuation of maturation-promoting factor (MPF) activation, and severely compromised meiotic resumption. CenpH protects cyclin B1 from destruction by competing with the action of APC/CCdh1 Impaired G2/M transition after CenpH depletion could be rescued by expression of exogenous cyclin B1. Unexpectedly, blocking CenpH did not affect spindle organization and meiotic cell cycle progression after germinal vesicle breakdown. Our findings reveal a novel role of CenpH in regulating meiotic G2/M transition by acting via the APC/CCdh1-cyclin B1 pathway.
منابع مشابه
Spatial regulation of APCCdh1-induced cyclin B1 degradation maintains G2 arrest in mouse oocytes.
Within the mammalian ovary, oocytes remain arrested at G2 for several years. Then a peri-ovulatory hormonal cue triggers meiotic resumption by releasing an inhibitory phosphorylation on the kinase Cdk1. G2 arrest, however, also requires control in the concentrations of the Cdk1-binding partner cyclin B1, a process achieved by anaphase-promoting complex (APC(Cdh1)) activity, which ubiquitylates ...
متن کاملHec1-Dependent Cyclin B2 Stabilization Regulates the G2-M Transition and Early Prometaphase in Mouse Oocytes
The functions of the Ndc80/Hec1 subunit of the highly conserved Ndc80 kinetochore complex are normally restricted to M phase when it exerts a pivotal kinetochore-based role. Here, we find that in mouse oocytes, depletion of Hec1 severely compromises the G2-M transition because of impaired activation of cyclin-dependent kinase 1 (Cdk1). Unexpectedly, impaired M phase entry is due to instability ...
متن کاملThe APC/C activator FZR1 coordinates the timing of meiotic resumption during prophase I arrest in mammalian oocytes.
FZR1, an activator of the anaphase-promoting complex/cyclosome (APC/C), is recognized for its roles in the mitotic cell cycle. To examine its meiotic function in females we generated an oocyte-specific knockout of the Fzr1 gene (Fzr1(Δ/Δ)). The total number of fully grown oocytes enclosed in cumulus complexes was 35-40% lower in oocytes from Fzr1(Δ/Δ) mice and there was a commensurate rise in d...
متن کاملTwo new competing pathways establish the threshold for cyclin-B–Cdk1 activation at the meiotic G2/M transition
Extracellular ligands control biological phenomena. Cells distinguish physiological stimuli from weak noise stimuli by establishing a ligand-concentration threshold. Hormonal control of the meiotic G2/M transition in oocytes is essential for reproduction. However, the mechanism for threshold establishment is unclear. In starfish oocytes, maturation-inducing hormones activate the PI3K-Akt pathwa...
متن کاملFunction of COP9 Signalosome in Regulation of Mouse Oocytes Meiosis by Regulating MPF Activity and Securing Degradation
The COP9 (constitutive photomorphogenic) signalosome (CSN), composed of eight subunits, is a highly conserved protein complex that regulates processes such as cell cycle progression and kinase signalling. Previously, we found the expression of the COP9 constitutive photomorphogenic homolog subunit 3 (CSN3) and subunit 5 (CSN5) changes as oocytes mature for the first time, and there is no report...
متن کامل